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Abstract

Challenging imaging conditions such as atmospheric
turbulence decrease face recognition performance. Prior
work has developed image-restoration methods to mitigate
the effects of atmospherics. In contrast, this work directly
optimizes for recognition performance in atmospheric con-
ditions. First, we propose simulated atmospheric turbu-
lence as an augmentation for training face recognition mod-
els, which is found to be useful for multiple low-quality im-
age conditions. Additionally, a loss term—called degrada-
tion loss—and a multi-stage training procedure is proposed
for further increasing performance. Degradation loss im-
proves performance by self-supervising features to be di-
rectionally invariant to atmospherics and express quality-
aware magnitudes. The advantages of trajectory loss and
our end-to-end approach are empirically demonstrated with
experiments on simulated atmospheric and low-resolution
test sets, including SoTA performance on the TinyFace
dataset.

1. Introduction

Face Recognition (FR) has been a well-studied prob-
lem in computer vision. Over the last several years, im-
provements surrounding deep learning have lead to high-
performing FR models [5, 39]. Despite these improve-
ments, handling low-quality imaging conditions, such as
atmospheric turbulence, remains an open problem. Appli-
cations such as surveillance that use long-distance imaging
are affected by atmospheric turbulence. Thus, it is impor-
tant that models are robust to such conditions to mitigate
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Figure 1. This work directly optimizes for the recognition prob-
lem in atmospherics. During training, an atmospheric turbulence
simulator augments the training data with different levels of per-
turbation (based on sampling distribution at∼Pat). Our proposed
degradation loss leverages a frozen pretrained network to self-
supervise deep features to be “equivariant” to the effects of atmo-
spheric turbulence. The training procedure and loss function are
described in detail in Section 3.

inaccurate classifications.
Atmospheric turbulence is caused by fluctuating temper-

atures and turbulent airflow in the atmosphere. Light waves
propagating through such conditions are refracted before
before reaching an image sensor, which leads to a variable
point spread function. Figure 2 shows the point spread func-
tion before and after atmospherics. Formally, the effect on
an image of atmospheric turbulence can be described with
the following equation [15, 36, 20]:

Ik = Dk(Hk(I)) + nk (1)

where k denotes time step, I the unobserved clean image,
and Ik the observed image affected by atmospherics. Dk

is a deformation operator, Hk is a blur operator, and nk

is signal noise. The terms in Equation 1 are non-linear
and random, and in practice modeling the effect is highly
ill-posed [27]. As Ik is of lower quality than I , com-



puter vision applications perform worse on perturbed im-
age Ik. Furthermore, the deformations Dk are particularly
challenging for face recognition because identifiable fea-
tures such as eyes or mouth can be deformed or slightly
re-positioned, which has an outsized effect on a neural net-
work classifier [26].

To address the problem of face recognition in atmo-
spheric conditions, this work looks at directly optimizing
an end-to-end FR model for such conditions. This is in
contrast to prior methods in the literature have approached
mitigating atmospheric turbulence for face recognition with
image-restoration methods [36, 35, 14, 15]. Figure 1 shows
a high-level overview of our methodology. In particular,
this this work proposes simulated atmospheric turbulence
as a training augmentation, a novel loss term, and a multi-
stage training procedure.

The methodology of this work is driven by simulat-
ing atmospheric turbulence on training data. A GPU-
accelerated atmospheric turbulence simulator [19] is used
to allow simulation at a large scale with a wide range of
turbulence levels. With the use of simulated training data,
we achieve state-of-the-art performance on atmospheric and
low-resolution test data. This is the first work to use sim-
ulated atmospheric turbulence as a training augmentation
for face recognition, which is experimentally demonstrated
to be be useful for face recognition in low-quality regimes.
Details on atmospheric augmentations can be found in Sec-
tion 3.1. In addition to training with simulated atmospheric
data, a novel loss term called degradation loss is proposed.

The motivation for degradation loss is to learn a feature
space that is “equivariant” under atmospheric transforma-
tions. In particular, an atmospheric feature should have
maximum cosine similarity with the original feature; and
the magnitude of the feature should decrease monotonically
as the strength of the atmospheric perturbation increases.
The first property is desirable because maximum cosine
similarity necessarily results in robust performance under
atmospheric transformations, as cosine similarity is the dis-
tance metric used for open-set evaluation. The second prop-
erty is desirable because magnitude can be used for quality
assessment, where lower magnitude indicates lower qual-
ity [21, 13, 6]. Degradation loss simultaneously optimizes
for the these two properties in a self-supervised manner by
penalizing an atmospheric feature if it is not between the
clean feature and the origin (within some margin). Degra-
dation loss is depicted in Figure 3 and described formally in
Section 3.2.

In order to train with degradation loss, GPU memory
needs to simultaneously hold a clean feature and an atmo-
spheric feature from the same image. The most straight for-
ward way of implementing this is passing a clean image and
the copied artificially degraded image through the network
in the training loop. However, we find several implemen-

tations of this approach to hurt training efficiency and test
performance. To overcome this, a two-stage training pro-
cedure is designed. The first stage pretrains a model which
is then frozen to contribute to finetuning a final model with
degradation loss in the second stage. This approach is more
efficient and results in our best performing model on atmo-
spherics. The implementation of our two-stage training pro-
cedure can be seen later in Figure 4 and is described in detail
in Section 3.3.

In Section 4, we perform experiments on a wide range of
simulated atmospherics and on low-resolution data. Com-
parisons are made with atmospheric image-restoration and
prior face recognition methods. A principle result is that
simulated atmospheric turbulence as a training augmenta-
tion leads to state-of-the-art performance on both simulated
atmospheric turbulence and low-resolution test sets. It is
also shown that using degradation loss results further im-
proved performance on simulated atmospherics by creating
features that are more robust to atmospherics. The paper is
concluded in Section 5 with a discussion on the proposed
methods and paths of future work.

In summary, this work makes the following contribu-
tions:

• Demonstrates simulated atmospheric turbulence as a
useful training augmentation for face recognition.

• Proposes self-supervised degradation loss and a cor-
responding two-stage training procedure for improved
performance in atmospheric conditions.

• Provide experimentation on wide range of simulated
atmospheric conditions and low-resolution datasets
and demonstrate State-of-the-art (SoTA) on TinyFace
dataset.

Figure 2. Left The effect of atmospherics on a grid of point sources
(inverted for visibility). The effect is spatially and temporally vari-
able. Right A sample before and after simulated atmospheric tur-
bulence. This work aims to create deep features that are robust to
atmospheric transformations.

2. Related Work
The optical effects of atmospheric turbulence have a rich

history of being studied in optics and physics [27]. One
of the most effective approaches for mitigating atmospher-
ics is adaptive optics [32, 28]. However, this method re-
quires large and expensive equipment. Thus, there has
been significant interest in mitigating atmospherics with
image-processing approaches. This has been approached



Figure 3. Margin-based softmax + degradation loss in feature space. Margin-based softmax losses such as ArcFace [5] and CosFace [34]
supervise features to have minimum distance from a class center, where the class center is represented as the the ith entry of final fully
connected layer W . We propose degradation loss, which offers a stronger inductive bias for robustness to degradations such as atmospheric
turbulence. In deep feature space, during training, the feature vectors of artificially degraded samples are supervised to 1) have high cosine
similarity with the clean feature vector and 2) be of lower magnitude.

with classical image-processing [38, 1, 16] as well as neu-
ral network-based approaches [20, 7, 17, 35].

Most similar to this work, several works have looked at
image-restoration approaches as an upstream step to face
recognition. Lau et al. proposed ATFaceGan, a method
that uses two generators to restore deformation and blurring
respectively[15]. In [35], they developed a learning-based
approach to restore images by estimating uncertainty maps
which are prior for a combination of both blur and geomet-
ric distortions in turbulence degraded images. Then, the
estimated uncertainty maps are used to guide the network
to obtain the restored image. Another proposed method
uses facial landmarks to guide restoration [14]. In [36], a
CNN-based network called TDRN is developed for image-
restoration. Nair et al. [25] provide a study on different
atmospheric simulators on face datasets. In [26], a base-
line model is evaluated on simulated atmospheric turbu-
lence and several challenges of face recognition under at-
mospheric turbulence are enumerated. Other works have
provided studies mitigating atmospheric turbulence outside
of face recognition [33, 8, 7, 20]. This work is different
from the aforementioned works, as we propose a method for
directly optimizing for face recognition rather than image-
restoration.

Prior work on low-quality and low-resolution face recog-
nition is also related to this paper. Cheng et al. propose an
end-to-end network for super-resolution and identification
called CSRI [4]. In [12], a distillation is used for resolution-
invariant recognition. Other prior work has proposed proba-
bilistic methods for estimating quality and uncertainty such
as Probabilistic Face Embeddings [30], Spherical Face [18],
and data uncertainty learning [3]. A multi-scale network
for low-resolution recognition is proposed in [23]. [37]
use a data synthesis method for training. A method for
low-resolution recognition using multidimensional scaling

is proposed in [2]. AdaFace [13] is a quality adaptive mar-
gin which is the current state-of-the-art on low-quality. Dif-
ferent from these works, this paper focuses heavily on at-
mospheric conditions.

3. Approach
The methodology proposed in this work consists of two

parts. The first is atmospheric turbulence simulation as
an augmentation, which is described in Section 3.1. The
second the is degradation loss, which directly supervises
feature vectors to be equivariant under atmospheric turbu-
lence. Degradation loss is described in detail in Section 3.2.
Given degradation loss, there are several implementation
details that need to be considered for an efficient and ef-
fective implementation. To accomplish this, we implement
a two-stage training procedure, which results in our highest-
performing model. The two-stage training procedure is de-
scribed in Section 3.3.

3.1. Simulated Atmospheric Turbulence as a Train-
ing Augmentation

Image augmentations allow for improved generalization
by adding variation to training data. There is a vast space
of augmentations that can be performed on an image, many
of which have been remarkably successful for computer vi-
sion tasks. In this work, we adopt atmospheric turbulence
as an augmentation, where an image is perturbed by atmo-
spheric simulation software before being fed to a network
during training. Simulated atmospheric turbulence is of
practical interest because it is not tractable to collect real
labeled data through atmospherics at a scale suitable for
training a deep learning model. Experimentally, we find
training with simulated atmospherics yields state-of-the-art
performance on simulated atmospheric and low-resolution
test sets. In the remainder of the work, training with At-



Figure 4. A two-stage procedure for training with degradation loss. In Stage 1, a model pretrained with standard training or AT-
Training. For AT-Training, a batch of N images are extracted from the training set and passed to the atmospheric turbulence simulator. An
atmospheric turbulence strength at is then sampled from probability distribution at∼Pat for each of N images. The simulator generates
degraded copies of each image with strength at. In the Stage 2, two copies of the Stage 1 network are instantiated, one of which is frozen.
The unfrozen network is trained with a margin-based softmax and degradation loss. The features from the frozen network are leveraged
for calculating the degradation loss.

mospheric Turbulence (AT) as an augmentation is referred
to as AT-Training. While adding simulated atmospheric
turbulence to the training pipeline is simple to implement,
there are several open questions for optimal training effi-
ciency and test performance.

We propose the following question, which this work be-
gins to answer: At what frequency and strength should at-
mospheric perturbations be applied during training? To
formulate this, let at be the strength of the perturbation,
which is sampled from a probability distribution at∼Pat

with support [0, k]. Note that the value 0 can be drawn from
Pat, which in practice is equivalent to a clean sample not
passed to the simulator. Thus, the probability a sample is
not passed to the simulator is represented as P(at=0). k is
the maximum perturbation strength that can be drawn from
Pat.

In this work, we create a space of sampling distributions
by selecting several values of k and several fixed values of
P(at=0). For P(at ̸= 0), atmospheric strengths are sam-
pled uniformly from discrete levels within (0, k]. Discrete
values of at are sampled because the atmospheric simula-
tion software requires a pre-calculated tilt-matrix for each
level of at. Therefore, it is intractable to sample continu-
ously from (0, k]1. In Section 4.4, experiments are run to
search over a space of a range of values of k and P(at=0).
While we ascertain the best model from this search space, it
is not exhaustive. A potential path of future work is further
optimizing the sampling distribution with respect to a given
test distribution. In the following section the degradation

1The tilt matrices have a small memory footprint of <1MB. Multiple
tilt matrices can be pre-calculated.

loss is discussed, which uses samples from Pat.

3.2. Degradation Loss Term

Degradation loss is a self-supervised loss term to sup-
plement margin-based softmax for face recognition train-
ing. Degradation loss optimizes for two properties in fea-
ture space. The first is for features vectors of a clean sample
and an artificially degraded copy of that sample (e.g., with
simulated atmospherics) to have maximum cosine similar-
ity. High cosine similarity necessarily leads to robust per-
formance under a given degradation, because cosine simi-
larity is the distance metric used for evaluation. The second
motivation for degradation loss is that features from clean
samples should have greater magnitudes than the features
of artificially degraded samples. This is based on the ob-
servations from prior work that lower quality samples have
lower magnitudes [21, 13, 6]. This is a beneficial prop-
erty because magnitude can be used as a quality-assessment
measure [21, 13]. Compared to a standard margin-based
softmax loss, degradation loss is a stronger level of supervi-
sion for robustness under degraded samples. For example,
in the case of AT-Training, ArcFace [5] minimizes distance
between 1) class-center to clean-sample and 2) class-center
to atmospheric-sample. Comparatively, degradation loss di-
rectly minimizes the distance between the clean-sample and
the atmospheric-sample. A comparison of margin-based
softmax and degradation loss is depicted in Figure 3. Con-
ceptually, the inductive bias implied by degradation loss is
that deep features should be invariant to atmospherics.

Let Ic be the clean image and Iat be a degraded copy
of Ic that has been perturbed by the atmospheric simulator,



Figure 5. 1:1 Verification results on LFW [9], AgeDB [24], and CFP [29] for simulated atmospheric turbulence levels 0.0–5.0 [26, 19].
The first row shows atmospheric-to-atmospheric pairs and the second row show clean-to-atmospheric pairs. It is found that the pretrained
atmospheric image-restoration model does not improve upon the baseline. Adding AT-Training (shown in red) significantly improves upon
baseline and the model trained with AT-Training. and AT-Training followed by degradation loss is Stage 2 (shown in purple) is the best
performing model.

where at is strength of the atmospheric turbulence. Higher
at implies higher levels of atmospheric turbulence and thus
a more degraded image. Ic and Iat are passed through the
backbone network F :

xc = F(Ic), xat = F(Iat) (2)

which yields feature vectors xc and xat. Then, xc is mul-
tiplied by a scalar σ(at) where l ≤ σ(at) ≤ 1 and l is a
hyperparameter. The result is a down-scaled feature vector
x̂c:

x̂c = σ(at)xc. (3)

The function σ(at) is chosen to be a sigmoid function fit to
the accuracy curve plotted along increasing levels of at, as
shown in Figure 3.2. Once x̂c is obtained, the squared l2
distance between x̂c and xat is calculated:

Ld = ||xat − x̂c||22. (4)

Given that x̂c is colinear in the the same direction as xc,
Ld is optimizing xat for maximum cosine similarity with
xc and for ||xat|| < ||xc||, because ||x̂c|| < ||xc|| by con-
struction of x̂c. Ld is obtained in a self-supervised manner
because xat is obtained following an augmentation of Ic,
and at is randomly sampled from Pat. Additionally, as a
measure to prevent overfitting to highly noisy samples, a
regularization margin r is subtracted from Ld. Regulariza-
tion margin r is calculated as

r(xc, at) = (||xc||2 − ||x̂c||2) sin θr (5)

where θr is a hyperparameter. Margin r is monotoni-
cally increasing with at. The effect margin r is that high-
atmospheric samples are penalized less severely for not

falling exactly on the path between the clean feature and
the origin. The margin is only a function of the clean fea-
ture and at—not the atmospheric feature. Finally, for each
sample, the margin is subtracted from distance Ld and the
batch of N samples is sum-reduced:

Ldg = − 1

N

N∑
i=1

(MAX(Ld,n − r(xc,n, atn), 0)
2 (6)

where Ldg is the final value of the degradation loss.

Combining Ldg with Margin-based Softamx Over re-
cent years, many loss functions have been proposed that op-
timize a cosine feature space with the help of an inter-class
margin [5, 21, 34, 13], which have been widely adopted for
training face recognition models. We use the term margin-
based softmax to refer generally of this class of methods. In
this work, we train models using a combination of both the
margin-based softmax and the degradation loss. In partic-
ular, experiments are performed using ArcFace [5], which
can be described as follows. Let θyi

be intra-class similar-
ity, θj inter-class distance, s a feature scaling factor, m the
inter-class margin, and N the mini-batch size:

Lms = − 1

N

N∑
i=1

log
es cos(θyi+m)

es cos(θyi+m) +
∑

j ̸=yi
es cos θj

. (7)

Finally, the the total loss Ltotal is a combination of Ltrand
Lms:

Ltotal = Lms + λhLtr (8)

where λh is a scalar hyperparameter.



Figure 6. Feature scalar σ(at). The x-axis is increasing levels
of atmospherics at. The dashed lines show accuracy (left y-axis)
of a baseline ArcFace model on atmospherics. The solid red line
shows a sigmoid function σ(at) fit to the the accuracy plots and
then re-scaled to l–1.0 (right y-axis). The motivation for σ(at) is
that if magnitude is a proxy for quality-assessment, it should be
correlated with accuracy [26, 21]. Lower bound l is 0.8. Degrada-
tion loss supervises feature magnitude using σ(at).

3.3. Multi-stage Training

For degradation loss to be calculated, both a clean fea-
ture xc and the atmospheric feature xat need to be in GPU
memory simultaneously. A simple way to achieve this is
to pass a batch of clean images and a batch of clean at-
mospheric images within the training loop. For backprop-
agation, this can be implemented as two separate gradient
updates (where the degradation loss is only applied to the
second) or as a single gradient update. For a single gradi-
ent update, the batch size must be halfed, so gradients from
both forward passes can be stored in memory. We find that
both of these implementations have lower performance than
a vanilla AT-Training model and take longer to train. To
overcome this challenge we design a two-stage training pro-
cedure. In the first stage, a model is pretrained. Stage 1 can
be performed with wight AT-Training or standard training.
In the second stage, a copy of the stage 1 model is frozen.
Clean images are passed through the frozen network while
atmospheric samples are passed through the unfrozen net-
work. As the frozen pretrained network does not change,
the clean embeddings only need calculated one time (for all
Stage 2 training runs). The result of this set-up is that Stage
2 training is as efficient as stage 1, while also employing
the degradation loss. Note that degradation loss is used if
and only if Stage 2 is used. In our experimentation, a model
trained with Stage 2 indicates that the degradation loss is
used. By design, degradation loss is never used in Stage 1.
Figure 4 shows an overview of the two-stage training set-up.

4. Experimental Results

The experimental section of this work is organized as
follows. Details for model training parameters, atmospheric
simulation, and datasets are in Section 4.1. Results on sim-
ulated atmospherics are in Section 4.2 and results on low-

resolution data is in Section 4.3. In Section 4.4, comparison
are shown between various sampling probabilities for AT-
Training. A discussion of results is provided in Section 4.5.

4.1. Experimental Set-up

4.1.1 Training Settings

ResNet-100 is used as a the backbone model with an em-
bedding size of 512. For training, we use a batch size
of 256 per GPU on each of 4 GPUs for a total batch size
of 1028. Training is completed with machines with either
3xRTX3090,1xA6000 or 4xTitanRTX GPUs. For more ef-
ficient training, mixed-precision floating point [22] is used.
Training is completed over 20 epochs with Stochastic Gra-
dient Descent (SGD) optimizer, polynomial weight decay
of 5e−4, and momentum of 0.9. A base learning rate 0.1 is
used with polynomial learning rate scheduler. Horizontal-
flip is used as augmentation. ArcFace loss [5] is used for
training all models with margin of 0.5 and scaling factor s
set to 64. For degradation loss Ldg , lower feature vector
scaling limit l is set to 0.8. The regularization margin angle
θr is set to 10 and term scalar λh is set to 60.

4.1.2 Atmospheric Turbulence Simulation

For atmospheric turbulence simulation software, the Phase-
to-Space model from ICCV 2021 is used [19]. This simula-
tor is chosen as it is it can be accelerated on a GPU. For the
simulator, the atmospheric turbulence ‘strength’ (i.e., at) is
calculated by aperture diameter D divided by fried parame-
ter r0. Fried parameter r0 is the net optical effect of atmo-
spheric turbulence, which is a function of varying refractive
indexes and distance. The AT simulator accepts a ratio of
D
r0

. We fix D at 0.1 meters, and vary r0 such that at = D
r0

falls between 0.25 to 5.00. D
r0

= 0.25 is minor turbulence
and D

r0
= 5.0 is severe. For testing, five levels of at are

used: 1.0, 2.0, 3.0, 4.0, 5.0. Figure 7 shows samples images
from this range. It can be seen that at high turbulence levels,
significant deformation and blur causes identifiable features
to be affected, such as distances between face landmarks.

4.1.3 Datasets

Training is done on the WebFace4M dataset [39]. For
evaluation, three dataset types are used: simulated atmo-
spherics, mixed-quality, and low-resolution. For simulated
atmospherics, we follow [26] and use a range of atmo-
spherics on three high-image-quality datasets: LFW [9],
CFP [24], and AgeDB [29]. CFP is avaulated with the
CFP-FP protocol and AgeDB is evaluate with the AgeDB-
30 protocol. For mixed-quality the IJB-C [11] dataset is
used. TAR@FAR=0.0001 is reported for IJB-C. For low-
resolution data, the TinyFace dataset [4] is used, which has



Model Test Sets
Stage 1 Stage 2 Simulated AT TinyFace Rank 1 TinyFace Rank 5 L-p2p
Baseline – 75.40 70.76 74.11 84.02

AT-Training – 88.23 73.18 75.99 86.17
Baseline Ldg 86.76 70.84 74.20 85.76

AT-Training Ldg 89.34 72.85 75.86 86.34
L-p2p=low paq2piq blind image-quality set

Table 1. A comparison of models before and after the two stage training procedure. Th best result in each column is highlighted in
bold. The model trained with degradation loss Ldg in Stage 2 is the best performing model on simulated atmospherics and L-p2p. The
vanilla AT-Training model is the best performing model in TinyFace rank-1 and rank-5. Refer to Figure 4 for an overview on our two-stage
training.

Figure 7. Sample images from the Mao et al. simulator [19] for
atmospheric turbulence strengths (at) 0.0–5.0.

Figure 8. Distribution plots of the distance between the feature of
a clean image and a feature from a copy of the image with atmo-
spherics at at = 3.0. Lower arccos distance indicates a feature
space more robust to atmospherics.

2,569 probe identities and 157,871 gallery images. Fol-
lowing previous work [13], 1:N Rank 1 and Rank 5 is
presented for TinyFace. As an additional low-quality test
set, 10,000 1:1 verification pairs of images with lowest 10
percentile paq2piq [37] blind-image quality are sampled
from the WebFace42M dataset [39] (excluding WebFace4M
identities).

4.2. Simulated Atmospheric Results

Prior work has reported face recognition results on simu-
lated atmospheric turbulence with image-restoration meth-
ods [36, 35, 14, 15]. Yasarla et al. 2022 [36] is the state-
of-the-art and used for comparison. In Figure 5, plots are
shown for LFW, CFP, and AgeDB under increasing lev-
els of atmospheric turbulence. It can be seen that meth-
ods using AT-Training significantly outperform the base-
line model and the image-restoration based approach on
all levels of atmospherics. The method utilizing Stage 2
and the degradation loss further improves over vanilla AT-
Training. Across all models, it can also be seen that per-
formance is lowest on AgeDB under atmospherics. This
may be do to the fact that AgeDB has 1:1 verification
pairs have 30+ year separation, which often results in a
black-and-white to colored-image comparison. It can also
be seen that clean-to-atmospheric comparisons score much
higher than atmospheric-to-atmospheric for models trained
with atmospherics. However, performance between clean-
to-atmospheric and atmospheric-to-atmospheric is nearly
equally low for the baseline model.

In Table 1, performance over all atmospheric sets is
averaged. AT-Training outperforms the baseline Arc-
Face model by 12.83%. Using Stage 2 and degradation
loss after AT-Training further improves performance by
1.11%. Using Stage 2 and degradation loss after stan-
dard training improves upon the baseline, but scores lower
than the aforementioned models. To understand improve-
ments from degradation loss, the distance between clean-
to-atmospheric samples of the same image is calculated in
Figure 8. In Figure 8, clean-to-atmospheric distance is less
great for the model trained with degradation loss. That is,
features supervised with degradation loss have less variance
from the original feature under atmospherics. This coin-
cides with our motivation that degradation loss supervises
for robustness under atmospherics.

4.3. Low-image-quality Results

The publicly available TinyFace dataset [4] is used as a
low-resolution dataset. In Table 1, it can be seen than all
of our models outperform the baseline ArcFace model. The



Method Venue Dataset Rank 1 Rank 5
CF [10] CVPR20 MS1Mv2 63.68 67.65

URL [31] CVPR20 MS1Mv2 63.89 68.67
AdaFace [13] CVPR22 MS1Mv2 68.21 71.54
ArcFace [5] CVPR19 WF4M 70.76 74.11

AdaFace [13] CVPR22 WF4M 72.02 74.52
AT-Train (Ours) manuscript WF4M 73.18 75.99

Table 2. A comparison of AT-Training to prior works on Tiny-
Face [4]. Our AT-Training method acheives state-of-the-art on
TinyFace rank-1 and TinyFace rank-5. Due to dataset redaction,
our model is not trained with MS1Mv2.

P(at=0) k Sim-AT TF-R1 TF-R5 IJB-C
0.50 3 87.07 72.29 75.59 97.08
0.66 3 86.32 72.31 75.00 97.16
0.50 5 88.23 73.18 75.99 97.03
0.66 5 87.28 72.91 75.43 97.18
1.00 – 75.40 70.76 74.11 97.16

TF-R1=TinyFace rank1; TF-R5=TinyFace rank-5
Table 3. Performance under different at sampling conditions for
AT-Training. The last row is the baseline model. IJB-C reported
with TAR@FAR=0.001. Best result per column highlighted in
bold.

model trained with vanilla AT-Training is the best perform-
ing model. Degradation loss does not outperform vanilla
AT-Training, which may have to do with the different char-
acteristics of low-resolution and atmospheric (further dis-
cussed in Section 4.5). In Table 2, comparison is shown
with prior methods on the TinyFace dataset. The previ-
ous State-of-The-Art (SoTA) on TinyFace is AdaFace [13],
which scores 72.02 Rank-1 and 74.52 Rank-5. Our AT-
Training method improves Rank-1 by 1.16% and Rank-5
by 1.47% to scores of 73.18% and 75.99%, for SoTA per-
formance.

As mentioned in Section 4.1.3, a test set of low
paq2piq [37] blind-image-quality assessment (L-p2p test
set) is evaluated on. Table 1 shows all of our models outper-
form the baseline on L-p2p. The model trained with degra-
dation loss is best performing model on L-p2p.

4.4. Atmospheric Sampling Probabilities

As introduced in Section 3.1, an open question is de-
termining an optimal sampling distribution for atmospheric
levels. In this experiment, at sampling is modified with two
parameters for Stage 1 AT-Training. The first is k, which
is the highest level of at, such that at ∈ [0, k]. The sec-
ond is P(at=0). Four full training runs are completed with
each the four combinations of k = 3, 5 and P(at=0) =
0.50, 0.66. k = 5 is the wider range at and k = 3 excludes
the most noisy atmospheric samples (see Figure 7 for ref-
erence). For k = 3, at is sampled uniformly from the set
{0.25, 0.5, 1.0, 2.0, 3.0}. For k = 5, at sampled uniformly
from the set {0.25, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0}.

Figure 9. Accuracy on simulated atmospherics for AT-Training
models trained with different at sampling distributions.

Figure 10. Both low-resolution and simulated atmospheric are
challenging conditions for recognition. Low-resolution are pixe-
lated and lack detail, but are not deformed. Atmospheric sample
are blurry and deformed. Methods from this work improve perfor-
mance on both.

Table 3 shows results for each run on as well as the base-
line model (i.e., P(at=0) = 1.0). It can be seen that the
best performing model on both the simulated atmospherics
and low-resolution is with parameters k = 5;P(at=0) =
1.0. Additionally the model trained with less frequent at-
mospheric data (i.e., k = 5;P(at=0) = 1.0) scores 97.18
on IJB-C TAR@FAR=0.0001, slightly outperforming the
baseline. The results on simulated atmospherics can bee
in more detail in the plots in Figure 9, where five different
levels of atmospherics are show shown.

4.5. Discussion of Results

In our experimentation we find AT-Training significantly
improves over the baseline on simulated atmospheric tur-
bulence (Figure 5). The degradation loss further improves
performance (Figure 5, Table 1) by creating feature that
are most robust (Figure 8). Degradation loss also improves
performance on the low-image-quality L-p2p set. For low-
resolution, degradation loss and AT-Training improve over
prior SoTA; and AT-Training is the best performing model
on low-resolution. We hypothesize that degradation loss
improves performance on by learning a stronger level of ro-
bustness to atmospheric deformations specifically. As can
be seen in Figure 10, low-resolution images do not suffer
from the same face-feature deformations as atmospherics.
A path of future work is collecting and evaluating on real
atmospheric data.



5. Conclusion
In this work, we have proposed simulated atmospheric

turbulence as a training augmentation, the degradation loss,
and a corresponding training procedure for face recognition
in low-image-quality conditions. Our methodology outper-
forms a baseline model on simulated atmospherics by a con-
siderable margin. Degradation loss improves upon vanilla
AT-Training by learning a deep feature space that is more
robust to atmospherics. SoTA is also achieved on the low-
resolution TinyFace dataset with our AT-Training model.
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