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1 Introduction

Throughout the semester of spring 2021 we completed an Independent Study on Adversarial Machine
Learning (AML). This was completed at Montana State University and advised by Travis Peters.

In this paper we give a summary of the topic of AML and an overview of the work we completed
for the study. The purpose of this paper is three fold. The first is reflection. By thoroughly looking
back over our work we aim to give ourselves a realistic picture of what we learned, where we made
progress, and where we didn’t. Secondly, we try to make this paper resourceful for someone who
is 1) interested in an introduction to Adversarial Machine Learning or 2) is interested in doing a
similar independent study. Lastly, this paper serves as our final graded assignment for the semester.

The rest of the paper is organized into five sections. In the remainder of this section we discuss
our collaboration process and introductory work. In the Section 2 we give a summary of the the
topic of AML along with several examples. In Section 3 we review the work we completed and what
we learned during our ‘Examination of Attacks and Defenses’ section of our study. In Section 4
we discuss different ideas we considered for a final research problem. Then, in Section 5 we talk
in-depth about Feature Attribution for Defending Adversarial Examples, which is the research topic
we focused on the last few weeks of the semester. In Section 6 we present our conclusions.

1.1 Collaboration

Collaboration was important throughout the independent study. This includes collaboration be-
tween the authors and collaboration with our advisor and other peers. All following following work
discussed in this review was aided by the collaboration processes discussed here.

During the semester we had weekly meetings with our advisor. These meetings were invaluable
for getting feedback and talking through our ideas. An outside perspective was very helpful for
examining and improving our work. Additionally, we had weekly stand-up meetings with the com-
puter security group. In these meetings we discussed our progress and were able to get inspiration
from the projects of the other group members. These meetings also offered another opportunity to
talk through out work.

Throughout the semester the authors met once or two times a week to work on AML, either
through zoom or in person. During these With only two people, we were able to be flexible on
these work times which was beneficial during busier weeks. We used GitHub and GoogleColab for
collaborating on implementations. Additionally, we used slack and text messages to share papers
and other ideas.

1.2 Introductory Work

Our first work for the semester was submitting an independent study application which included a
rough schedule for the semester. This schedule included three primary sections: an introduction, a
more detailed look at attacks and defenses, and a final research project. Although we changed many
details on the schedule to follow specific topics of interest, we kept our schedule aligned with these
broad sections. This was helpful for preventing us from spending too much time in one area. After
completing the independent study application, we started work for our introduction section.
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Our goal for the the introduction section was to gain a broad understanding of adversarial
machine learning and also get up to speed on tools that could help us implement AML techniques
throughout the semester. To get started, we watched tutorial series on several machine learning
libraries. These included Pytorch, TensorFlow, and Keras which we ended up using in almost all
implementations throughout the semester. While implementing practice models with these libraries
we were able to review machine learning concepts including loss functions, optimization functions,
and model architectures. We also started using GoogleColab which is a Jupyter Notebook based
environment. We had limited prior experience with Jupyter Notebooks so this was very helpful. All
these concepts and tools proved be helpful go forward with the semester.

In order to gain a general understanding of AML we used several resources. In the first three
weeks of the semester we read the first three chapters of an Adversarial Machine Learning Text-
book [11]. These introduction chapters offered some valuable information for defining and classifying
attack scenarios. They also gave several real world examples of AML. We also watched a few AML
lectures that were available online.

Our deliverable work from this section was an AML Summary (link here). This offered us a
good chance to reinforce what we learned about different categories of adversarial machine learning
attacks. The following summary in section 2 is an update of this original summary.

2 Adversarial Machine Learning

2.1 What is Adversarial Machine Learning?

Adversarial Machine Learning is the study of attacks on machine learning systems and how to defend
these attacks. More specifically, the field looks at attacks by changing machine learning model
inputs (2.2.1). AML could be considered a subtopic of computer security or machine learning. It
is a subtopic of computer security because it discusses defending an attack surface in a system that
uses a machine learning model. AML becomes especially intertwined with security in cases where
machine learning models provide security-related functionality. One popular example of this is a
machine learning based Intrusion Detection System [11].

AML could also be considered a subtopic of machine learning for several reasons. AML is not just
related to machine learning because it defends machine learning systems. It also utilizes machine
learning techniques to create attacks and defenses. Furthermore, recent literature has suggested
ways to use AML techniques to create better performing models [32] and also to increase model
interpretability [5].

2.2 Attacking Machine Learning Systems

2.2.1 The AML Threat Model

An adversarial machine learning attack occurs when an adversary gives input to a model with
the intent of causing unnatural behavior in the model. Specifically, the adversary aims to either
1) deceive the model at evaluation time or 2) cause the model to learn a desired pattern during
training.

It is an important distinction that the adversary’s control is limited to inputs. Any direct control
of the the model itself or the output falls outside the scope of adversarial machine learning. Although
this may seem limiting, research has shown an adversary can have a strong influence on the behavior
of a model with well crafted inputs or manipulated data [9, 29, 13]. In fact, it is these findings that
have prompted a proliferation of research into AML. Furthermore, this threat model is not arbitrary.
It is common for a potential adversary to have access to model inputs. On the other hand, for an
adversary to directly make changes to the model or model output, they must either have insider
access or have hacked the system in which the model is deployed. While these are valid issues, they
are beyond the scope of AML.

2.2.2 A Taxonomy of Attacks

In AML, there are several settings an attack can be deployed in. As with other domains of computer
security, the abilities and limitations of the attacker vastly differ from situation to situation. Due to
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this, there has been significant research into defining a a taxonomy of attacks [11]. The taxonomy
we present here is adopted from the textbook by Joseph et al. [11].

The taxonomy has four different axes on which an attack can be classified on. These are: security
violation, target range, model access, and data access. Each one of these axes is able to represent
different characteristics of an attack and we dedicate a subsection to each. Although all of these
can be valuable for classifying an attack, we found the most important distinction to be data access.
Therefore we discuss this axis (Sections 2.2.2.4-2.2.2.6) in more length than the other three.

2.2.2.1 Security Violation

Different AML attacks result in different security violations. Three established security violations
in computer security are privacy attacks, integrity attacks, or availability attacks. The line between
availability attacks and integrity attacks is somewhat blurred in AML. Both attacks aim to induce
misclassification by a model. In an integrity attack, the model fails by allowing malignant instances
to pass through a model. An attack that goes undetected by an intrusion detection system would
be an example of an integrity violation. An integrity violation can also be described as instances of
false positives. An availability violation occurs when a model is preventing use of a normal use of
a system to expected users. For example, an intrusion detection system that denies normal users
access to a system would be an example of an availability violation. This violation can also be
described as instances of false negatives.

In a privacy attack on a machine learning model, an adversary aims to glean private information
from the training dataset. Scenarios where there may be an incentive includes models trained on
medical records or financial information. The nature of these attacks are different from integrity or
availability attacks because the attacker’s goal is not to cause misclassification.

2.2.2.2 Target Range: Targeted vs. Indiscriminate

In a targeted attack an adversary is concerned with misclassifying a specific subset of input data.
On the other hand, an adversary performs an indiscriminate attack if they are not concerned with
which inputs the model misclassifies, but rather that the general model performance is degraded.
This distinction is primarily used in the causative setting because a causative attack has an influence
on all inputs at evaluation time.

2.2.2.3 Model Access: White-Box vs. Black-Box

A white-box scenario is when the adversary has access to all information about the model. This
includes algorithm type and internal parameters. A black-box scenario occurs when an adversary
does not have this information. In a black-box attack an adversary may attempt to reverse engineer
the model. Given access to a sufficiently similar dataset a black-box is comparably effective to the
white-box counterpart.

2.2.2.4 Data Access: Causative vs. Exploratory

The last axis, and the most important in our opinion, is data access. Given that an adversarial
machine learning attack occurs from an adversary manipulating input data, we can further break
attacks into two categories: causative attacks and exploratory attacks.1

2.2.2.5 Causative Attacks

Causative attacks can occur when the adversary has some control over the training data. By con-
trolling certain parts of the training data the adversary can guide the machine learning algorithm
to learn desired patterns. When given arbitrary control over the training data an adversary can
easily get the model to learn a pattern based on only a few of the input features [31]. This pattern
can then act as back door for the adversary once the model is deployed. Figure 1 gives an example
of this effect. Another example would be if an adversary put sunset backgrounds in all stop sign

1We adopt these terms from Joseph et al. [11], which have been widely adopted by others in the AML research
community. Note, however, that many synonyms can be found in the literature. Causative attacks are also often
referred to as data poisoning attacks, back door attacks, and training time attacks. Exploratory attacks are often
referred to as test time attacks, evaluation time attacks, and adversarial examples.
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photos in a road-sign data set. In this theoretical example, a model trained on this dataset would
be at risk of classifying all signs as stop-signs during sunsets.

In general, causative attacks are effective. The literature has shown theoretical limitations on
model accuracy given the presence of a causative adversary [11]. Figure 1 is an example of the com-
plete influence an adversary can have over a model with access to the entire training set. However,
it is not even necessary for the adversary to manipulate the entire dataset to influence the model.
In some cases poisoning less than 3% of the training data can result in a successful attack [12].

Figure 1: An example of the influence of a causative attack on the Cifar 10 dataset. In the training
data we put vertical blue borders only on the cars. The first row show samples from the training set.
The second row shows 10 images that were ran through the classifier. Even though most of these
images look nothing like cars, they were classified as cars because they had the blue vertical borders.
The last row shows the same images without the vertical borders. The same classifier classified most
of these images correctly. The code for creating this figure and the related model can found in the
code linked here.

2.2.2.6 Exploratory Attacks

In an exploratory attack, the attacker can only give inputs to the model once it has finished training.
Unlike a causative attack, the attacker in an exploratory attack does not have the ability to modify
training data. Without access to the training data the adversary has no ability to change what
the model learns. Instead, the attacker aims to deceive the model. In this setting an attacker
can still craft inputs that cause inaccuracies with high probability. Furthermore, the inputs may
appear very similar to natural examples [9]. A gradient based perturbation on an image, which
is imperceptible to the human eye, can cause the model to have a vastly different output (see
Figure 2). There is significant discussion in the literature on why these inaccuracies occur on such
small perturbations. A common theory is that their are many blind spots in the solution space of a
model. To trick a classifier an adversary has to craft an input that falls into one of these blind spots.
Furthermore, these blind spots are ubiquitous in the solution space and every input is close to some
blind spot [7]. Furthermore, literature suggests that these blind spots are fundamental to machine
learning algorithms and that there is a fundamental trade-off between robustness and classification
accuracy [7, 11, 16].
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Figure 2: Adversarial example created with FGSM. A small gradient based perturbation results in
drastically different model output. Figure adopted from Goodfellow et al. [9].

Depending on the setting, there are a couple ways an adversary can carry out an exploratory
attack. The strongest and quickest exploratory attack can be created if the adversary has a copy
of the model that they are attacking. This copy can often be obtained by reverse engineering the
model [21]. With a copy of the model the adversary can employ model-based attacks. These attacks
use information from the model to find optimal perturbations on the input. The seminal attack in
this class is FGSM [9], which is a one step gradient-based attack. Other prominent model-based
attacks include the Carlini-Wagner Attack [4], DeepFool [15], BIM [13], and BPDA [2].

Even without a copy of the model an adversary can still carry out an exploratory attack. By
querying the model while making subtle changes to the input an adversary can eventually find a
subtle change that causes misclassification. There are theoretical guarantees that such an adversarial
example can be found in polynomial queries with respect to the input dimensionality [11].

2.3 Defenses Against Adversarial Attacks

With an understanding of how a machine learning model can be attacked we can now look at
strategies that can be used to defend these attacks. Defense methods for causative and exploratory
attacks are separate so we discuss them separately below.

2.3.1 Defenses Against Causative Attacks

In order to defend against causative attacks the defender must determine which sections of the
training data have been poisoned. If the defender does not filter out poisoned data, the model can
either degrade in performance or learn a pattern desired by the attacker. The latter can act as a
backdoor after training for the attacker. There are two possible approaches to detecting poisoned
data. The first method is statistical examination of the dataset. Poisoned data is more likely to
have outliers from the dataset. Traditional outlier detection can be applied to this problem [23]. A
second method is to examine how the model reacted after training on some example. The Reject on
Negative Impact defense rejects an example if the model update surpasses a threshold for negative
effect on model performance [17]. An abnormally high loss score can also be used to detect poisoned
data [33]. A more thorough defense can be created by combining outlier removal and model based
detection [33]

2.3.2 Defenses Against Exploratory Attacks

Contrary to causative attacks, exploratory attacks assume the attacker does not have access to the
training data, and thus must adopt different techniques to attack the model. These changes are
also reflected in the methods employed to defend against these attacks. There are two main tracks
that researchers have explored to defend against exploratory attacks. The first is simply making the
model more robust to adversarial input, while the second one involves detecting adversarial examples
and either reforming those examples closer to the training distribution, or discarding those inputs [1].
These approaches are discussed in more detail below.
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2.3.2.1 Robustness Defenses

Robustness defenses encompass a a wide range of methods that have proven themselves to be useful
against exploratory attacks. These styles of defenses generally involve some changes done to the
target classifier model before the testing phase. One such example of this is adversarial training [30].
This defense expands the distribution that the model can perform well on by creating adversarial
examples to train the model on. A variety of techniques have been tested with in adversarial training
that have shown promising increases in robustness. This is an especially effective method when the
adversarial examples are similar to those previously seen by the model. However, adversarial training
shows shortcomings when different attack techniques are used. Another type of robustness defense
is defensive distillation [22]. Defensive distillation uses one target classifier to generate probability
vectors for the training set, and then trains a different “distilled” model using the probability
vector as each image’s label. The theory behind this is that the second model can gain much more
information from the probability vectors and would thus be able to generalize more effectively to data
outside of the training distribution. In practice, this technique has been shown to be highly effective
and can reduce adversarial image misclassification from 95% on MNIST to less than 0.45% [22]. On
the other end of exploratory defenses are those that deal with catching and fixing adversarial inputs
once the model is already trained.

2.3.2.2 Detection Defenses

Detection defenses deal with identifying adversarial inputs and either discarding those inputs or
reforming them so they can be classified correctly. There are a variety of techniques that have
been proposed. One of the techniques we focused heavily on was a defensive architecture called
MagNet [14]. MagNet utilized an autoencoder that learned the distribution of the training data
to detect adversarial inputs. Inputs that were far away from the training manifold (measures via
reconstruction error) were discarded, whilst all others went through the autoencoder in an attempt
to reform them towards the training distribution. The reformation would then act as a secondary
technique that would improve classification on adversarial inputs that avoided detection. Another
example of a detection defense is DefenseGAN [24]. DefenseGAN functions similarly to MagNet
in that it trains a Generative Adversarial Network (GAN) on the training distribution to create a
representation of the training data. When it is time to predict a class, the input is fed into the GAN,
which produces an input similar to the original, but without noise or adversarial perturbations. This
generated input is then fed into the original classifier. Techniques like MagNet and DefenseGAN
come across as highly effective due to their “attack-agnosticism”; they do not rely on being trained
on any specific type of attack, which makes them highly desirable for use where an attacker could
theoretically use one or multiple methods of generating adversarial perturbations.

3 Examination of Attacks and Defenses

After completing the introduction section and turning in our original AML summary, we started on
a section to examine proposed AML attacks and defenses. Our goal for this section was to gain a
more practical understanding of AML attacks and defenses. We started off with the intention to
study both attacks and defenses in both the causative and exploratory setting. However, we ended
up focusing primarily in the exploratory setting. Our approach for learning was to implement the
prominent attacks and defenses.

Throughout this section we almost entirely focused on image classification. There are several rea-
sons for this. Getting started there were the most resources available for creating models and attacks
on image classification datasets. We originally intended to move our focus to other domains includ-
ing intrusion detection. However, as we got further into the semester image classification remained
appealing. One reason for this is that images are high dimensional inputs. High dimensionality
means an easier attack surface and therefore the influence of attacks become more pronounced [11].
Also, using images were fun to work with because we got see a visualize how much(or how little)
an attack changed an input. Although it feels like getting to look at images is trivial, I actually
feel like the easy visualization played a role in helping us gain intuition. Furthermore, all image
inputs are continuous. Other domains such as natural language processing or intrusion detection
system have discrete features which adds complexity to creating adversarial attacks. By limiting
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Figure 3: Classifier accuracy against black-box attacks with different query strengths. Tested on the
MNIST, Fashion MNIST, and CIFAR 10 datasets.

ourselves to image classification we bypassed the chance to get familiar to problems associated with
adversaries in other common domains. However, because of this we were able to direct our focus on
implementing attacks and defenses. We think much of the understanding we gained for AML with
image classification could carry over to other domains in future work.

For the first week of this section (week 4 in the semester) we focused on attacks. At the end
of week 4 we completed a notebook overviewing several attacks from the causative setting and one
attack from the exploratory setting (notebook link). The causative attacks in this notebook were
similar to the attack shown in figure 1. We added a certain feature to one class in the training data.
Then, we applied this feature to all classes in the evaluation dataset. We saw up to 99% of the
evaluation data classified as the chosen class. The features we added to the data were squares of
different colors and sizes. This led us to believe that a model can learn to put importance on a small
number of features. Furthermore, we even saw this effect when the pixel colors within the square
were random.

For the exploratory attack we implemented FGSM. We tested the attack under different pertur-
bation strengths. As the strength of the attack increased we saw greater rates of misclassification.
All the experimentation in this notebook was done using the Cifar 10 dataset.

There were several important takeaways for us from creating the first notebook. The methods we
used to implement attacks were used several times down throughout the semester. Also, we gained
some intuition on how machine learning models learned. We found that models can learn to put
a lot of weight on a small percentage of the features. This intuition meshes well with the effect of
adversarial examples. A good causative attack creates low hanging fruit for the model to learn.

For weeks 5-7 we focused on exploratory attacks and defenses. For a deliverable we completed
a GoogleColab notebook which is linked here. In this second notebook we implemented FGSM and
rand+FGSM attacks [30]. We tested these attacks on classifiers for each of three common image
datasets. Additionally, we tested the strength of the attacks when constrained by limited queries.
Our results from this can be seen in Figure 3.

The defenses we implemented for this notebook were adversarial training [30], MagNet [14], and
Defense-GAN [24]. Overall, the implementations of these defenses were challenging and we spent
the better part of two weeks working on them. Adversarial training was the easiest to implement.
Adversarial training is achieved by adding adversarial examples into the training set. Each iteration
of training new adversarial examples examples are created and added to the dataset. The intuition
behind this is that you can train a model on adversarial examples to cover up blind spots. Each
iteration of adversarial examples exposes new blind spots for the model to learn. In our simple We
tested between 1 and 20 iteration of adversarial training. We saw significant increased performance
against the FGSM attack after 10-20 adversarial training iterations.

The second defense we implemented was MagNet. MagNet is to be considered a prepossessing
defense because the model is not affected by the defense. The defense works by prepending an
autoencoder to the original model. The autoencoder works by compressing an input into a lower
dimensional latent space. Subsequently, the autoencoder reconstructs the image from the latent
space. The motivation for the autoencoder is that it is able to learn a representation of the data.
When the autoencoder takes in examples that are in the distribution of the training data it will
reconstruct the image with little reconstruction error. However, when an input is outside of the
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training data distribution (e.g adversarial examples) the autoencoder reconstructs the image with
more error. MagNet classifies an input as adversarial if the reconstruction error is above a threshold.
This defense fits in with a class of defense papers that argue that adversarial examples fall off the
manifold of the training data. Under this explanation, an input can be determined to be adversarial
if it does not fall on the manifold. The authors of MagNet suggest the autoencoder is able to learn
to represent the manifold and therefore has the ability to detect adversarial examples.

Figure 4: MagNet vs FGSM.

Our implementation of MagNet used a five
layer convolutional network that had a latent
space 4x smaller that the input. This defense
showed a significant robustness improvement
against the vanilla FGSM attack (see Figure 4).

The last defense we implemented for this
section was Defense-GAN. This defense works
by using a Generative Adversarial Network
(GAN) [8] to recreate images without adver-
sarial perturbations. The motivation for this is
similar to MagNet. The defense aims to learn a
representation of the data and leverage the rep-
resentation to find and reform adversarial in-
puts. The authors present state-of-the-art results from the technique citing the the unequaled
representation power of GANs.

The first step in implementing Defense-GAN was training a GAN by itself. We had difficulty
with this step. In retrospect, we think our GAN implementation suffered from mode collapse as
described in Srivastava et al. [27]. With our marginal GAN in hand, we were able to integrate it into
a Defense-GAN implementation. Guided by figures from the original paper (shown in Figure 5 and
Figure 6) we created a running implementation. We saw no improvement in robustness from our
implementation. We think this was primarily due to how bad the original GAN was. After turning
in our exploratory attacks we defenses notebook in week 7, we had time for one topic before we
wanted to move on to the next section. We were originally planning on doing a similar 2 to 3 week
section on causative attacks. However, we ended up deciding to continue to focus on the exploratory
setting. The decision was based primarily on that we were interested and that we would have to
focus less on model training.

For the last topic of this section we looked at exploratory attacks based on queries to find an
adversarial example instead of first reverse engineering a model. We read Chapter 8 of the AML
textbook which focuses on this topic. The chapter provided several algorithms for searching for an
adversarial input without having a copy of the model. They also discussed why this was a realistic
threat model and proved some theoretical bounds on the ability of an attacker in this setting. We
alloted one week for this topic before completing this section.

Figure 5: A high level diagram Defense-GAN. An input vector z is optimized to minimize recon-
struction of the input by the pretrained GAN. The output from the generator is fed to the original
classifier. Figure adopted from Samangouei et al. [24]
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Figure 6: A more detailed look at Defense-GAN’s optimization mechanism. Vector z is optimized
by many gradient descent steps that aim to reduce reconstruction error. Figure adopted from
Samangouei et al. [24]

4 Other Candidate Research Problem

At week 9 we decided to move on to the section where we would look into finding a research topic to
pursue. Specifically, we wanted to work on a defense strategy. We spent a good portion of this section
trying to brainstorm a defense to work on. We eventually settled on Using Feature Attribution for
Adversarial Defense as a research topic. We spent the last weeks of the semester doing researching
more background on this topic and starting to implement experiments. We dedicate Section 5 to
our future work for this topic. In the rest of this subsection we discuss the other ideas we looked at
in the weeks before we decided on a feature attribution as a defense.

4.1 Adversarial Transformation Model for Adversarial Training

Training a machine learning model to create adversarial input for adversarial training was the first
idea we seriously considered pursuing. We spent a week testing the idea. When we further looked
through the literature we found several papers from 2017 that looked thoroughly at this idea [3, 18].
We were unable to think of a meaningful iteration/improvement from these works and decided to
keep looking at other options for defenses. Still, it was interesting learning about this strategy and
we thought it would be worth reviewing.

The idea was that you could train one model to create adversarial examples and then simulta-
neously train the main model on these examples. It would work as a sort of dynamic adversarial
training. The intuition was that the Adversarial Transformation Model would learn to make exam-
ples in the blind spot of the model. Meanwhile, the real model would be trained on these examples
and effectively learn to cover up these blind spots. In the next iteration, the Adversarial Model
would find new blind spots and so on. Furthermore, the universal approximation property of the
transformation network could learn a to exploit a broader distribution of blind spots than a standard
attack. After many iterations, the hypothesized result would be a more robust classifier.

One of the interesting things we learned from trying this was that a neural network can handle
two loss functions. The whole idea was contingent on the idea that we could change train a network
to make transformations that caused misclassification without significant changes to the image. We
attempted to do this by training the adversarial transformation model on minimizing both reverse
cross entropy (to cause misclassification) and mean squared error (to keep images similar). Even,
though these cost functions have seemingly opposite goals, a network was still able to optimize both.

4.2 Looking at Current Defenses in Different Security Contexts

We brainstormed ideas based on ideas suggested in a paper titled Motivating the Rules of The
Game for Adversarial Examples [6]. The paper suggests that a lot of the literature in adversarial
machine learning claims to be directly motivated by security concerns, but in reality does a poor
job addressing the breadth of practical concerns. Specifically, lots of work in the literature has
addressed attacks limited to minuscule perturbations, when in reality lots of settings do not have
this limitation. The paper discusses an image classification attack scenario where the attackers are
only limited by content preservation. The paper cited above explicitly defines this:

Content-preserving perturbation: The attacker does not get to choose the starting point,
but is handed a draw from the data distribution. However, the attacker may make any
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perturbation to the example they want, as long as the content is preserved. That is, if
it is a picture of a particular person, it must clearly still be that person.

As a research idea we considered choosing a defense that was proposed to defend imperceptible
perturbations and then adapting it to defend the class of content-preserving attacks. Although we
did not pursue this topic, we have kept in mind the the idea of defending a spectrum of attack
classes.

4.3 Deciding on Using Feature Attribution as a Defense

We ran into this idea from the papers [34, 10]. Both pf these papers look at using feature attribution
for defenses. However, these works were recent and there seemed to be lots of variations that had
not been looked into. We brainstormed a couple different ways feature attribution could be used
that we though would be worth at least trying out. We were also interested in this topic because we
wanted to look more at general model interpretation and feature attribution methods. We also feel
like this category of interpretation based defense may not have the extent of theoretical limitations
that has been shown for other defense strategies like adversarial training.

5 Future Research Problem: Feature Attribution for De-
fending Adversarial Against Examples

5.1 Background

Feature attribution assigns an attribution value to each feature in an example after it has been ran
through a classifier. The attribution assigned to each feature represents how important that feature
was to the classifier’s decision. A high attribution value means that the feature was important in the
classifier’s decision. A low attribution value means the feature was unimportant to the classifier’s
decision. Feature attribution has been researched under the topic of model interpretability and is an
open research problem in its own right. However, there are now several prominent feature attribution
methods. A few of these are Integrated Gradients [28], Saliency Maps [26], and DeepLIFT [25].

Recent work has proposed using feature attribution as a means to defending adversarial exam-
ples [34, 10]. ML-LOO is an algorithm proposed by Yang et al. [34] that uses the sparseness of a
feature attribution map to determine whether an image input is adversarial. They find that clean
images have a sparse feature attribution map (i.e a few features have high attribution where as
most features have near zero attributions). Inversely, adversarial images have a less-sparse feature
attribution map. Figure 7 shows their findings for attributions of a clean image vs an adversarial
image.

Jha et al. [10] propose another method to find adversarial examples. They suggest masking
the top 10% of features based on their attribution values and then reevaluating the decision of
the classifier. They find that a classifier will change its classification on an adversarial image after
the mask has been applied. On the other hand, a clean image is highly likely to receive the same
classification even after the top 10% of features have been masked. Therefore an image can be
determined to be adversarial based on whether the classification changes after masking.

Figure 7: A small percentage of the features are very important in a clean image. A higher
percentage of the features are medially important in an adversarial image. Figure adopted from
Yang et al [34].
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5.2 Future Work

In future work we want to continue to explore feature attribution as a method for defending adversar-
ial examples. The first idea we want to implement is testing the algorithms discussed in Section 5.1
on an array of feature attribution methods. The authors of both papers suggest that the algorithms
should perform similarly regardless of the feature attribution method used. We want to see if we
find that different attribution methods work better with either of the algorithms. This will also give
us background using feature attribution libraries.

The next step would be to work on a new algorithm using feature attribution to detect adver-
sarial inputs. One idea we have includes comparing feature attributions at each layer. This concept
is outlined in rough pseudo-code in Algorithm 1. Our cursory hypothesis is that the attribution
maps from a clean images would change consistently between subsequent layers where as attribution
maps from an adversarial image the would be random. If this does not work we could look in to a
variation off of Jha et al. or Yang et al.

Algorithm 1: Layer-wise Attribution Analysis

Result: return decision
L← layers in network;
Feature Attributions← [];
for l ∈ L do

Feature map← feature attribution(l) ;
Feature Attributions.append(Feature Map) ;

end
gradients← ∇Feature Attributions ;
if gradients are similar then

decision← clean;
else

decision← adversarial;
end

6 Conclusion

We would like to end our independent study review paper by sharing concluding thoughts. In
Section 6.1 we give our final remarks on the topic of AML. Finally, in Section 6.2 we reflect on what
we learned through out the semester.

6.1 AML Summary

Adversarial Machine Learning research addresses how to make machine learning models more robust
against adversaries. The literature shows that small manipulations to data at both training and
evaluation time can have drastic effects on model behavior. These findings have prompted increasing
study into why this behavior exists and how machine learning models can be defended. With
increasing adoption of ML for real-world scenarios, there is more demand for ML interpretability
and robustness. AML research attempts to makes progress on the these problems. There has been
significant increases in robustness is the last 5-10 years. However, almost all defenses can be broken
by some alteration of an attack. Furthermore, some of these defenses have provable limitations.
This means defending adversarial examples is still largely an open problem.

6.2 Reflection

Looking back at the semester, both authors think the independent study was successful. We were
able to learn about a topic of ongoing research that we are both interested in. Furthermore, we got
to build skills related to both machine learning and computer security. For machine learning we
got practice with different frameworks like Tensorflow and PyTorch and learned new concepts like
Autoencoders and GANs. Related to computer security, we got to examine the importance of threat
modeling when defending an attack scenario.

11



Still, there were things that could have been improved throughout the semester. In the intro-
duction we fell short of the goal of gaining a broad understanding of AML. This is in part due
to there not being a lot of centralized information. However, we could have done a more enough
job researching the breadth of the topic and using more resources. The introduction chapters in
the textbook were valuable for understanding different attack settings, but since this was the only
resource we used to start off with we were left with gaps of understanding in approaches to defenses.
Furthermore, we had no idea on what the state-of-the-start performances were for attacks or defenses
were. We think if we had spent more time scanning literature in the beginning we would have saved
time later on in the semester.

Throughout the semester we set deadlines for ourselves for our main deliverables, however we
were inconsistent with setting smaller week to week goals. Similarly, the work times with both
authors was not always consistent. This was nice for alleviating stress during busier weeks for each
of us throughout the semester. However, in general having a more structured week to week schedule
for would have likely resulted in a faster and more consistent pace.

In the future, both authors aim to to apply what we learned from this semester. This includes
the technical tools and concepts, but also the takeaways from a self-directed study. These skills and
takeaways will hopefully be used to benefit future work.
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