A Study of Neural Radiance Fields

Computational Geometry Course Project
CS 5750 with Prof. Sudhanshu Semwal

Wes Robbins
11 May 2022

Abstract

Computational Geometry has played a fundamental role of the development of tasks such as
image synthesis, image reconstruction, and depth maps. More recently, methods for these tasks have
began to use neural networks. A recent—and already well-known—method for image synthesis and
scene reconstruction that uses machine learning is Neural Radiance Fields (NeRFs). NeRFs have
not only create eye-catching results, but achieve state-of-the-art performance on image synthesis and
scene reconstruction benchmarks. In this report, I provide an overview of Neural Rendering Field
Methods. Additionally, I discuss my own implementation and running time of training NeRF on my
system. Last, I discuss some of the latest improvements in NeRF-based methods.

1 Neural Radiance Fields

Neural Radiance Fields (NeRFs) are a method for novel view synthesis. Here, I introduce the topic of
NeRF in several subsections. First, in Section 1.1, I analyze the meaning of each word in the title of
NeRF. Then, in Section 1.2, I introduce the neural network and discuss what the importance of the
neural network is in NeRFs. Last, I discuss the method for training the NeRF model in Section 1.3.

After introducing Neural Radiance Fields, the rest of the report is organized as follows. Section 2 is
an overview of my implementation details and computational cost. Section 3 covers four different recent
improvement of the base NeRF approach. Then, I conclude the report in Section 4.

1.1 Why is the method called Neural Radiance Fields?

Understanding the title of NeRF can help give us context to better understanding the main ideas of
NeRF. Below I define each word of the title in the context of this work.

Neural Here, neural implies the use of a neural network. In NeRF, a fully connected neural network
with 7-layers is used. In NeRF, the neural network is the backbone for representing a scene.

Radiance In graphics processing, radiance defined by the quantity light that is being emitted from a
point in space in each direction. NeRF adopts this term from traditional graphics processing, and uses
it in the same context.

Field The NeRF method models a smooth (i.e., continuous) representation of a scene, which can also
be described as a ‘field’. NeRFs can generate views from arbitrary views, which are described by viewing
angleds—and viewing angles are of course continuous. In other words, NeRF is not limited to a fixed
number of discrete views.

1.2 Neural Classifier vs. Neural Scene Representation

To understand the Neural Radiance Fields, we must understand the purpose of the neural network within
them. It can be challenging to understand the purpose of the neural network in NeRF, since it is much
different than the standard use case of a neural network. Typically, a neural network is used as function
approximator F'(z). The purpose of neural network F'(x) is to learn a mapping from an input space to
a set of classes. One of the widely known use cases for neural networks is for image classification. Image

classification is an example where the model is learning a mapping from an arbitrary image input to an
output class. However, the neural network in NeRF serves a much different purpose.

The neural network NeRF is used to learn a scene representation. As an input the model takes a
5d vector (z,y, 2,0, ¢) which is made of a 3 dimensional space coordinate and a 2 dimensional viewing
angle on the surface of a viewing sphere. Instead of outputting the class the neural network outputs a
4 dimensional vector (R, G, B, «) which represents the color and radiance or transparency of that pixel.
To synthesize a novel view, the neural network is queried for each pixel in the new image. Figure further
shows the difference between a neural network used for standard classification versus a neural network
used for scene representation.

Standard Classification

Scene Representation

Input Hidden Hidden Input
layer

layer layer layer

CAT
5d Vector

RGB Values
(*,y.x,0,4)

(R.G,B)

Figure 1: A neural network for standard classification vs. a neural network for scene representation.

1.3 Training NeRF's

In order for the neural network in a NeRF to accurately represent a scene, it must be trained on a
dataset with images from many viewing angles of a scene. During training, each image from the dataset
is cycled through. To create ground truth for the model, traditional graphics rendering methods are
used to create a ray going through the image. The values from this ray are the ground truth for the
neural network. The neural network is queried to return the value of the pixel for each position along
the ray. The loss penalty is based on the for far the neural networks prediction is from the pixel value
in the ground truth ray. Gradient descent is used to update the weights of the model.

Figure 2: A diagram of training a NeRF with two example training images. The neural network is shown
as Fg, the ground truth ray is shown on the left, and the predicted ray is shown on the right. Diagram
is adopted from [2].

2 Implementation

For my implementation of NeRFs I use the PyTorch deep learning framework [3]. T implemented the
neural network as described in the paper. Since the neural network in NeRF is relatively simple, this
part was not too challenging. The more difficult part was setting up the pipeline with the data and
the training loop. Since I own a Nvidia GPU I was able to train the model. However, without a GPU
it would not be feasible to train a NeRF model. Below in Figure 4, I show system information with
respect to the computational cost of NeRF. Then, in Figure 5, I show the loss plot over 200,000 training
iterations.

Begin [NVIDIA RTX A5000 Laptop GPU] 4@ 8x
[TRAIN views are 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1440MHZ 7000MHZ "C N/A% N/A W
21 22 23 4%] [
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
6 97 98 99]
[TEST views are [113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
129 130
131 132 133 134 135 136 137]
AL views are [160 101 102 103 164 105 106 167 108 109 110 111 112]
0% | ©/200000 [00:80<?, 2it/s]
/home /wes /env-building/miniconda3/envs/magface/lib/python3.7/site-packages/torch
/functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will
be required to pass the indexing argument. (Triggered internally at ../aten/sr
lc/ATen/native/TensorShape.cpp:2157.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
[Config] Center cropping of size 200 x 200 is enabled until iter 500
Loss: 0.22371935844421387 PSNR: 9.523306846618652
Loss: 0.1862538903951645 PSNI 44133758545 2788 wes (] % 127MB fusr/1lib/xo
Loss: 0.1436040699481964 B~y v 4 sy 1722 gdm ¢} 3 % 107MB /usr/lib/xo
Loss: 0.09241358935832977 RAALALAAIUARCH ASIMINCC=QITgTS)
Loss: 0.046488422900438321

e, 8.631it/s]

Figure 3: Screenshots of the terminal information from my system while running my NeRF implemen-
tation. On the right side of the Figure, it shows logging output. It can be seen that this screenshot is
from the start of a run of 200,000 iteration, which is the recommended number of training iterations for
the lego bulldozer dataset. The output shows that the training is on pace to take 6 hours 23 miuntes by
running at 8.6 iterations per second. In reality, my system would thermal throttle and training took up
to 12 hours.

The right side of the Figure shows live GPU information in my system. On my system I have a Nvidia
RTX A6000 laptop GPU with 16GB device ram and 6,144 CUDA cores. The maximum theoretical per-
formance of this GPU is 21 teraflops (floating point operations per second), which makes it a high-end
consumer GPU. The screenshot shows NeRF uses between 94-100% of the GPU while running, which
demonstrates that NeRF is a very computationally expensive method to train.

Loss Value Throughout Training

0.20 A

0.15 A

0.10 A

Loss Value

0.05 A

-

T T T T
0 5000 10000 15000 20000
Training Iterations

" Brids ™ - PR
e el il

0.00

Figure 4: This Figure is a plot of training loss throughout a NeRF training run. A low loss means the
model is performing well on the training data. In this Figure, it can be see than in early training iterations
(approximately 0-10,000), there is a large drop in training loss. This is due to the fact that originally
the model is generating random views. The model is quickly able to learn a reasonable representation of
the scene. However, after a 10,000 iteration, there are still many unnatural artifacts that seem to 'float’
around in the output images. As we approach the 200k iterations, these artifacts slowly disappear.

3 Recent Improvements

Even though NeRF was only published in 2020, it has been rapidly adopted due to the high-quality
results. The original paper now has over 800 citations, and improving Neural Rendering Field methods
is an active area of research. In this section, I describe a few recent improvements to NeRF. The
improvements include broadening the scope of the scene; accelerating NeRF training and inference; and
synthesizing 3D scenes from fewer images.

3.1 NeRF in the Wild

While the original NeRF paper created very smooth results, the the results were limited to constricted
scenes. For example, in the Lego Bulldozer dataset that I used for training, the background is edited
out and replaced with a white background. This allows much simpler training for the neural network
because it cannot learn spurious correlations with random objects or lighting changes in the background.

In a paper titled Nerf in the wild: Neural radiance fields for unconstrained photo collections, several
changes were proposed to handle the problem described in the last paragraph [1]. The main idea of this
paper was to ‘transient’ items in an image from the static items in the image. Transient items include
people or birds in the sky, which may appear in one image, but not another. Additionally, the paper
uses a separate embedding for appearance which handles different lighting conditions. A diagram of
these additions can be seen in the below Figure 5. Example images of novel views with different lighting
conditions of an in-the-wild scene can be seen in Figure 6.

glal

BpDRATANGE -
ambiacding
o -
yigrwing) .
chracinn | b
. . RGE -
colar =
L = IS——. o
nasHon xd!r'SE!-'_
— - B
uncsrainty
[T)
AR (|
traninng = WMLF =~ RGEB | 3
ambacdng color | 5
w
- L2l)
densiy | 2
L .

Figure 5: A diagram of the architecture from NeRF in the Wild. Instead only one fully connected neural
network, also know as multi-layer-perceptron (MLP), three different neural networks are used. This
allow decoupling of lighting condition, transient items, and static items. Figure adopted from [1].

Figure 6: Novel view synthesis from NeRF in the Wild.

3.2 Accelerating NeRF by using Many Neural Networks

Another path of research in neural rendering fields is reducing the computational cost of training and
inference. As discussed in Section 2, NeRF models have a high computational cost during both training
and inference. For example, on a consumer GPU it took me up to 12 hours to train NeRF model on the
Lego Bulldozer dataset, which is a relatively simple scene. At inference, after the model was trained, it

took my system four minutes to generate a 360° view. It is ideal to accelerate training time to reduce
carbon footprint and to allow faster iteration. Additionally, if an application needs real time rendering
it must run at least 30 frames per second, which is much faster than the original NeRF model can be
run.

A method to reduce the computational cost of was proposed in Kilonerf: Speeding up neural radiance
fields with thousands of tiny mips [4]. The idea of the kilo NeRF method is to have many small neural
networks represent small parts of the scene rather than a single large neural network to represent the
entire scene. In Kilonerf, since there are many small neural networks, they can all be parallelized and
many pixels and can be generated at once. Additionally, the space complexity is reduced significantly
because the space complexity of a neural network is O(n?) where n is the width of the layers. Since
Kilonerf uses much narrower (and shallower) neural networks, much less space is needed on the GPU.
The authors claim they are able get over 2,000x speed up from the baseline with their method. The
general idea of Kilonerf can be seen in Figure 7.

NeRF | KiloNeRF

S S

: S

0.02s

) 2548x fastex

Figure 7: This Figure shows the difference between standard NeRF and Kilonerf.

3.3 Scaling NeRF Scene to Representation to City Blocks

Another limitation of vanilla NeRF is that it is only limited to small scenes. While NeRF in the Wild
enabled NeRFs to represent large outdoor scenes, it was still limited to only one scene. An interesting
solution to this problem was proposed in Block-NeRF: Scalable Large Scene Neural View Synthesis [6].
The Block-NeRF method is proposed by a group of Waymo researchers who have the goal of synthesizing
novel views across many city blocks. The visual results from the paper are quite impressive. The model
is able to generate a ‘fly over’ of different blocks with high fidelity. The NeRF model was trained on
images takes from different areas around the block. One drawback that still remains of this approach is
that the camera locations and viewing angles need to be known exactly. The results of this paper can
be found at https://waymo.com/research/block-nerf/.

Figure 8: This Figure shows the general idea of Block-NeRF. Images from many adjacent blocks can be
used to train a single NeRF model, which is able to synthesize novel views in any of the city blocks.

3.4 360° Image Synthesis with Few Images

The final path NeRF research I will discuss is decreasing the number of images. In some cases, the
number images needed to train a NeRF may be limiting factor. In the Lego Bulldozer, there is 100
training spread evenly across a viewing sphere. Furthermore, the location and viewing angle must be
known exactly for each training image. This may not be realistic in some applications. Several works
have proposed methods to reduce the number training images needed for NeRF model. One method
I found particularly interesting is from a paper titled Sharf: Shape-conditioned radiance fields from a
single view [5]. In this work they propose a projecting the 2d image into a voxelized representation from
a single image. With the voxelized image, they train the NeRF method. The authors show they are able
to generate views from multiple that are geometrically faithful to the original image with only a single
image as training input. The drawback of this method is that the novel views which have viewing angles
significantly different from the original image are not high fidelity. Further, they may not miss details
of the object not shown in the single original training image.

T

v Pasition p
Sh Direction d c
ape
H Ocoupancy @ ' o R
&
Appearance code g

Shape network & Appearance network F Rendering Image

Figure 9: An architecture diagram of the Shape Conditional NeRF method. First, a shape network is
used to create a voxelized version of the image. Next, the voxelized image is used to train the neural
network and synthesize new views.

4 Conclusion

In this project, a did an overview of Neural Rendering Field methods, also known as NeRFs. NeRF's are
a method for novel image view synthesis, which requires a model to generate combine several previous
views into a single, novel view. NeRFs have significantly boosted state-of-the-art performance on image
synthesis and scene reconstruction benchmarks since they were originally published in 2020. In this
report, I over viewed the fundamental concepts Neural Rendering Field Methods. Additionally, I discuss
some of the latest improvement in NeRF-based methods and discuss my own implementation of NeRF
and the execution time of training on my system. Overall, I enjoyed doing a project that combined deep
learning computational geometry.

References

[1] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron, Alexey Dosovitskiy,
and Daniel Duckworth. Nerf in the wild: Neural radiance fields for unconstrained photo collections.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
7210-7219, 2021.

[2] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi,
and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In Furopean
conference on computer vision, pages 405—421. Springer, 2020.

[3] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

[4] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. Kilonerf: Speeding up neural radi-
ance fields with thousands of tiny mlps. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 14335—14345, 2021.

[5] Konstantinos Rematas, Ricardo Martin-Brualla, and Vittorio Ferrari. Sharf: Shape-conditioned
radiance fields from a single view. arXiv preprint arXiv:2102.08860, 2021.

[6] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Mildenhall, Pratul P Srini-
vasan, Jonathan T Barron, and Henrik Kretzschmar. Block-nerf: Scalable large scene neural view
synthesis. arXiv preprint arXiv:2202.05263, 2022.

