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Abstract
Bayesian Networks offer a natural way to represent probabilistic information for many practical
problems. Inference can be performed with Bayesian networks by extracting marginal probabilities
for any subset of random variables. Furthermore, inference methods account for observed states
of random variables, known as evidence. While inference can be performed exactly, it becomes
intractable for large networks. Another approach is to approximate marginal probabilities which
can significantly decrease time complexity. In this paper, we implement a Bayesian network and
two inference methods. We implement one exact inference method, variable elimination, and
one approximate inference method, Gibbs sampling. We perform experiments on five predefined
networks of various sizes. In our experiments, we find that Gibbs sampling can run more efficiently,
while having an average of 11% error for inferred probabilities. Code for this project can be found
at https://github.com/WesRobbins/AI-CSCI-446.

1. Introduction

Probabilistic reasoning methods are an impactful field within Artificial Intelligence, and have been
shown to be effective in many real-world settings. Probabilistic reasoning methods offer a flexible
approach for storing information about the world, which is much less restrictive than only storing
information that can be determined absolutely. Due to this, probabilistic methods are often far more
powerful than strictly logic based methods.

Graph models are an effective way to store and process probabilistic information. A well-known
probabilistic graphical model is the Bayesian network. A Bayesian network is directed acyclic graph
where nodes represent random variables and directed edges represent conditionality between vari-
ables (Russell and Norvig (2021)). Probabilities for each possible value of each node given the node’s
parents must be provided to use the network. These probabilities can be given by expert knowledge,
or learned if sufficient data exists.

As in any probabilistic inference system, a Bayesian network performs inference by extracting
posterior probability distributions for any subset of the random variables, known as query vari-
ables. These marginal distributions can be calculated exactly with general exact inference methods.
During exact inference, non-query variables are marginalized out out of the network. Because
naively marginalizing is exponential with respect to network depth, it is common to store sub-
marginalizations in the inference process (dynamic programming). One such method is variable
elimination. However, even dynamic programming approaches may not be efficient enough if in-
ference must be fast or the network is very large. Another approach is to approximate marginal
probabilities for the query variables. Several algorithms have proposed for approximating marginal
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Network Name Nodes Edges

Alarm 37 46
Child 20 25
Hailfinder 56 66
Insurance 27 52
Win95pts 76 112

Table 1: Information about the five networks used in our experiments.

probabilities from a Bayesian network including: direct sampling, importance sampling, and Gibbs
sampling.

For this project, we implemented a Bayesian network framework along with two inference meth-
ods: variable elimination and Gibbs sampling. We use five given networks to test our implementation.
We compare the difference in performance between our exact inference method (ground truth) and
our approximate inference method. Additionally, we compare the computational efficiency of the
methods. Our hypothesis for this work is below.

Hypothesis Variable Elimination is an exact inference method, so we expect variable elimination
to give us correct marginal probabilities for all problems. We hypothesize that Gibbs sampling will
give near-exact probabilities for all problems. Specifically, we hypothesize that Gibbs sampling will
have less than 5% error for n = 100 samples. In terms of efficiency, we expect Gibbs sampling to be
require 5-10x less computation due to the fact that it is approximating the marginal probabilities
instead of computing all marginalizations.

2. Problem & Approach

As previously mentioned, in this project, we implement a Bayesian network and two inference
methods. The goal of inference is to calculate marginal probabilities of all query variables. Inference
must account for evidence and the non-query variables. More explicitly, we try to find marginal
probabilities of query variables Q given the non-query variables X and evidence E:

P (Q|X,E). (1)

We answer this questions for several networks, several query variables, and several sets of evidence.
Information about the five networks that are used can be found in Table 1. More information about
the specific problems can be sound in Section 4.

Variable Elimination

The first inference method we implement is variable elimination, an exact inference method. All
exact inference methods must marginalize all non-query variables X in order to obtain the marginal
probabilities. Variable elimination is more efficient than naive marginalization, as it implicitly stores
sub-marginalizations during the elimination process.

From conditional probability, it is given that

P (Q|E) = α
∑
X

P (Q,E, x) (2)

where α is a normalizing scalar. To find the marginal probability, we must marginalize not-query
variables. In the naive approach, marginalizing each variable (i.e calculating each term P (Q,E, x))
may require a long chain rule operation with exponential time complexity.
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Variable elimination significantly improves efficiency by storing intermediate marginalizations of
non-query variables. The variable elimination algorithm iterates through all non-query variables,
and eliminates each variable v. As we go through the elimination process, we no longer have true
probability distributions, but rather factors of the random variables. By performing a pointwise
multiplication over all factors that contain v and then summing v from the pointwise product (this
is also know as a sum-reduction), we effectively marginalize v from any f. This can be seen in the
following equation

τ(xa, xb, xc) =
∑
v

ϕ1(v, xa)...ϕn(v, xb, xc) (3)

where n is the number of relevant factors to v and τ is the new factor created from this opera-
tion (Cozman et al. (2000)). The new factor τ is added to the list of factors and all factors are
removed from the factors list. Intuitively, we view this as merging probabilities of v into all relevant
probabilities.

After eliminating all non-query variables, we are left with a factor that only contains the query
variables. Once we normalize this factor (multiply by α) we have obtained the marginal distributions.

Ordering As a heuristic for variable elimination order, we first eliminate variables with the mini-
mum number of children and parents. We tried several different heuristics and found this to be the
most efficient. We find the ordering to be massively important, which we discuss further in Section
4.

Implementation Details We implement variable elimination with a single for loop over an numpy
einsum operation for the sum-reduction of each variable.

Gibbs Sampling

Gibbs Sampling is an approximate inference method that uses a Markov chain Monte Carlo algorithm
to sample from the conditional probability tables given by a Bayesian network. It is useful when
direct sampling is difficult or when the size of a network restricts efficient exact inference. A drawback
of Gibbs Sampling js that it is difficult to predict how many samples to take to ensure some amount
of precision. Additionally, it can fail under certain conditions.

Gibbs Sampling works by creating a Markov chain of samples where each sample is drawn
by conditioning on the values of the last sample (GENG et al. (2000)). Thus, instead of any
marginalization, we can directly look up conditional probabilities using the Bayesian Network.

P (xt|xt−1) (4)

The first sample is formed using forward sampling, moving through a topological sort of the nodes
and sampling a value for each parent before their child. When evidence is given, we do not sample any
of the evidence nodes, thereby reducing the complexity even further. Once our sampler converges,
we can calculate the marginal probability for each value q of the query variables as shown.

P (q ∈ Q|E) =
# of samples with q

total # of samples
(5)

As stated above, it is difficult to guess how many samples to take in order to get acceptable
accuracy, and is dependent on the network complexity. Furthermore, sometimes the literature
recommends the first n samples are discarded in a burn-in period. In this period we wait for the
Markov chain to reach a stationary distribution. In our experience, averaging after a burn-in period
did not significantly change the distributions and was set to false by default in the code. Interestingly,
we added a setting to only sample from the set of the union of the Markov blankets of the query
variables as opposed to the entire network and saw that the distributions were quite similar. This
could be because the query variables are independent from the rest of the network given their Markov
blankets, but we expected that the approximations would be somewhat less accurate on account of
the variables outside the blanket only being sampled once at the beginning.
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3. Experimental Approach

For our analysis on these inference algorithms, we are given five different Bayesian Networks of
varying size (see Table 1). We calculate marginal probability distributions for some set of variables
given 3-5 different sets of evidence. We compare the efficiency of the two algorithms using a decision
metric. We test the precision of Gibbs Sampling by comparing it to the results of variable elimina-
tion. If the implementation is correct, variable elimination is guaranteed to give correct marginal
distributions because it is a general exact inference algorithm. We use a third party library1 to check
that our variable elimination implementation generates correct marginal probabilities.

Decision Metric In order to compare the efficiency of Gibbs sampling and variable elimination,
we use the following to track decision for each algorithm. For Gibbs sampling, each sample is of cost
1. For variable elimination each floating point multiplication is of cost 1. Under a standard model
of computation, both these operations are of equal cost. Furthermore, these are the two primary
operations for each of their respective algorithms. While we believe this metric offers reasonable
efficiency comparison between the two algorithms, it is not perfect.

4. Results

Performance

First, we compare the results of our variable elimination algorithm with a third party library. We find
that our algorithm correctly infers exact marginal probabilities. With these ground truth marginal
probabilities, we can test the precision of Gibbs sampling.

We find that Gibbs sampling decent inference precision. As seen in Table 4, Gibbs sampling has
an 11% error on average, with lowest performance on queries with evidence. This is lower perfor-
mance than we hypothesized. However, the error was greatly impaced by the Win95pts network,
on which Gibbs Sampling performed extremely poorly. The conditions of this network could be a
failure case of Gibbs, where the sampling becomes trapped in the high probability zones of boolean
variables (Russell and Norvig (2021)). Without the Win95pts network, our error becomes 7% on
average and 2% without evidence.

Efficiency

We find that according to our decision metric, variable elimination is on average 68% more com-
putationally expensive than variable elimination. While this is not insignificant, we hypothesized
Gibbs sampling would offer a greater magnitude of efficiency improvement. Additionally, we find
that both algorithms are relatively fast over all, running in less than a .01 of a second. In Table 4,
we show an evaluation of the efficiency of the algorithms on each network.

Effect of Elimination Order We find that the ordering of the variables in variable elimination
is quite significant. When running variable elimination without ordering the variables, the program
would accumulate factors with many variable resulting in high-dimensional matrices. This quickly
used up massive amounts of space (up to 90GB) and often crashed the program. On the other hand,
once the variables were sorted the program ran much faster and used way less memory.

We found that sorting the variables in ascending order based on the number of parents and
children provided the fastest run-time, followed closely by a sort considering just the number parents,
and considering just the number of children was the worst of the orderings we used.

1. https://github.com/erdogant/bnlearn
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Variable Algorithm No Evidence Low Evidence Medium Evidence

HYPOVOLEMIA Var Elim (.200, .800) (.554, .446) (.219 .781)
HYPOVOLEMIA Gibbs (.216, .784) (.190, .810) (.199, .801)

LVFAILURE Var Elim (.050, .950) (.250, .750) (.962, .038)
LVFAILURE Gibbs (.052, .948) (.052, .948) (.844, .156)

ERRLOWOUTPUT Var Elim (.050, .950) (.009, .991) (.604, .396)
ERRLOWOUTPUT Gibbs (.040, .960) (.010, .990) (.020, .980)

Table 2: Marginal Probabilities for each query variable from the Child network. For all marginal
probabilities refer to results/results.txt file in our repository.

Network Name Low Evidence Medium Evidence High Evidence Average

Alarm 0.009 0.18 0.24 0.14
Child 0.02 0.08 0.08 0.06
Hailfinder 0.01 0.06 0.05 0.04
Insurance 0.07 0.09 0.06 0.07
Win95pts 0.35 0.25 0.16 0.23
Total Average 0.09 0.12 0.14 0.11

Table 3: Percent error of Gibbs sampling for each network and each level of evidence. Percent error
obtained from comparing to variable elimination. Only 3 of 6 evidence levels are shown for
Win95pts.

Network Name Variable Elimination Gibbs Sampling

Alarm 943 640
Child 732 400
Hailfinder 2,716 1,120
Insurance 907 540
Win95pts 1,800 1,520
Average 1420 844

Table 4: Efficiency of the two algorithms - scored by the decision metric discussed in section 3.

5. Summary

This paper compares the performances and run-times of two inference methods used on various
Bayesian Networks. Variable Elimination is an exact inference method that marginalizes out un-
wanted variables and keeps the complexity down by using dynamic programming. Gibbs Sampling
is an approximate inference algorithm that samples directly from the given conditional probability
tables using a Markov chain Monte Carlo method. We compare the performance of our approximate
method against the true values given by our exact inference method and explore the advantages
and drawbacks of these algorithms. We calculated marginal probability distributions using various
sets of evidence on five different Bayesian Networks and found that while Variable Elimination gives
exact values, it is somewhat slow and has high space overhead, while Gibbs Sampling computes the
same values with around 11% error rather quickly.
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